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Abstract

In the analysis of broadband sound fields in ducts, for example, turbofan engines, large exhaust stacks, and exhaust

mufflers, the assumption of ‘Equal Energy per Mode’ (EEpM) is frequently made. The practical realization of such a

sound fields is valuable as a means of, for example, allowing liner attenuation measurements obtained from measurements

on different test rigs to be compared directly, or for allowing measurements results to be compared with computer

predictions in which the assumption is made. This paper describes a technique in which arrays of sound sources at the wall

of a duct are driven by white noise signals to generate a sound field of prescribed modal energy distribution and modal

coherence. The number of sources required for effective mode synthesis and the source geometry are also discussed. An

example is presented in which ‘EEpM’ broadband sound field is generated up to a maximum non-dimensional frequency of

ka ¼ 20 using 152 sources.

r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

There are many situations in which it is desirable to be able to generate a broadband sound field within a
duct of known modal content. The availability of a standardized in-duct sound field is useful as a means of, for
example, allowing the multi-mode performance of different liners or duct silencers obtained from different
tests to be compared directly, or for allowing measurement results to be meaningfully compared with
computer predictions. Presently, there are no guidelines for the definition of such a sound field. However, in
many analyses of broadband sound fields in ducts, the assumption of ‘Equal Energy per Mode’ (hereafter
termed EEpM,) is frequently made [1–4]. Here the sound field in a narrow frequency is assumed to comprise
all propagating modes with equal energy and their mode amplitudes are uncorrelated [1–4]. Another reason
for the usefulness of the EEpM sound field is indicated in the recent work of Joseph and Morfey [4], who have
ee front matter r 2005 Elsevier Ltd. All rights reserved.
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shown that in this sound field there is a simple and well-behaved relationship between the in-duct acoustic
pressure and the sound power. This is not the case in, for example, the sound field due to a distribution of
monopoles. This relationship allows the sound power flowing along the duct to be readily determined from
comparatively few measurements of acoustic pressure.

Whilst in-duct testing with an EEpM sound field is desirable for the reason stated above, the facilities
required to generate such a sound field is currently very costly. One way of approximating an EEpM sound
field is by locating one end of the duct in a large reverberation chamber at high frequency, thereby exciting the
duct with an approximately diffuse sound field.

This paper is concerned with an alternative approach for generating an EEpM broadband sound field with
uncorrelated mode amplitudes. The procedure uses sound sources on the duct wall driven by a white noise
signal passing though a matrix of shaping filters. Inverse methods are used to calculate the cross-spectra of the
strengths of sources arranged in a number of rings mounted on the duct wall for exciting an EEpM sound field
in a hard-walled circular duct. Note that the effects of reflections and flow are neglected in this paper, although
they are readily incorporated within the theory. Optimal number of sources are investigated and the distance
between source rings is evaluated for generating a broadband sound field with incoherent modal amplitude.
2. Theory of broadband sound field generation in ducts

2.1. Duct mode theory

At a single frequency o, an incident mode propagating along the duct shown in Fig. 1 without reflection,
can be written in the form

pþmn ¼ ejotamnCmnðr;jÞ e�jamnkz, (1)

where amn is the mode amplitude, k is the free space wavenumber o=c, and c is the sound speed in the duct.
The term ðm; nÞ denotes the usual circumferential and radial mode indices. Here kmn are a set of eigenvalues

that are characteristic of the duct cross-section, which satisfies the hard-walled boundary condition
J 0ðkmnaÞ ¼ 0, where Jm denotes the Bessel function of the first kind of order m, the prime signifies
differentiation with respect to the argument, and a is the duct radius. The term amn is the non-dimensional

axial wavenumber amn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� kmn=k

� �2q
, which takes values between a ¼ 0 at the modal cut-off frequency,

o ¼ omn ¼ kmnc, and a ¼ 1 as o=omn !1, corresponding to modes well above cut-on. The term Cmnðr;fÞ is
the normalized mode shape function, which in a hard-walled circular duct is given by

Cmn ¼ JmðkmnrÞejmf=Nmn, (2)

where Nmn is chosen to satisfy the mode normalization condition S�1
R

S
jCmnj

2 dS ¼ 1, where S is the duct
cross-sectional area.
Fig. 1. The source array is comprised of a number of rings, Nr with a distance between them of Dz. Each ring contains a certain number of

sources, Ns=r and the sources are mounted on the duct wall. Sources are driven to construct predefined sound field.
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The time-averaged sound power WþðkaÞ flowing along the duct is given by

W̄
þ
¼ Re

i

2or

Z
S

dxpþ � ðxÞ
qpþðxÞ

qz

� �
; x 2 S, (3)

where r is the ambient fluid density. Substituting Eq. (1) into Eq. (3) and performing the integration by the
orthogonal property of the mode shape function gives

W̄ mn ¼
S

2rc

X
m;n

E amnj j2
� �

amnðamn : realÞ, (4)

where W̄ mn is time-averaged sound power of mode of the (m; nÞth and the modal summation is taken only over
the propagating modes, (amn: real). If the sound power in each of the incident modes at a single frequency are
assumed to be $, and the mode amplitudes assumed to be uncorrelated (we treat the mode amplitude as
random variables), from Eq. (4) this gives

Efjamnj
2g ¼

2rc$

S
a�1mn; ðm; nÞ ¼ ðm

0; n0Þ

Efamna�m0n0 g ¼ 0; ðm; nÞaðm0; n0Þ

9=
;. (5)

In the broadband problem, we wish to compute the optimal source strength time series qiðtÞ with frequency
spectrum qiðoÞ, where qiðtÞ is the ith time record with duration T. The cross-spectral matrix Sqq is given by

Sqq ¼ lim
T!1

E
1

T
qqH

� �
¼ lim

T!1

E
1

T
jq1j
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fq1q�2g
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� � E

1

T
fq1q�l g

� �

E
1

T
fq2q
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�
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� �
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jqLj

2

� �

0
BBBBBBBBBBB@
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CCCCCCCCCCCA

(6)

which excites, in a least-squares sense, a mode amplitude distribution whose cross-spectral matrix, from Eq.
(5), is given by

Saa ¼ lim
T!1

E
1

T
aaH

� �
¼

2rc$

S

a�11 0 0 � � 0

0 a�12 � � � 0

� � a�1k � � �

� � � � � �

� � � � � �

0 � � � � a�1K

0
BBBBBBBBB@

1
CCCCCCCCCA
, (7)

where k ¼ ðm; nÞ, K is the number of propagating modes and ‘H’ denotes the Hermitian transpose operator.
2.2. Optimal source strength spectral matrix

The vector of mode amplitudes âTi ¼ ½a1iðoÞ a2iðoÞ a3iðoÞ . . . aNiðoÞ� excited by the source array with
source strengths q̂

T
i ¼ ½q1iðoÞ q2iðoÞ q3iðoÞ . . . qNiðoÞ� may be written in terms of a modal coupling

matrix G:

âi ¼ Gq̂i þ e (8)

whose (k; l)th term relates to the coupling between the kth source and the mode amplitude of the lth mode.
This term may be written as Gkl ¼ Clðrk;fkÞ e

�ial kzk=ð2rcalÞ. The optimal estimate of q̂io that minimizes the
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sum of squared errors eHe ¼ ða� âÞH ða� âÞ is given by

q̂io ¼ Gþai, (9)

where Gþdenotes the pseudo-inverses of G and Gþ ¼ ½GHG��1GH for the case where there are more sources
than modes (the over-determined case). The corresponding optimal source-strength cross-spectral matrix is
defined by

Sqqo ¼ lim
T!1

E
1

T
q̂ioq̂

H
io

� �
. (10)

Substituting Eq. (9) into Eq. (10) gives the optimal source-strength cross-spectral matrix as

Sqqo ¼ GþSaaG
þH (11)

from which the least-squares best estimate for the mode-amplitude cross-spectral matrix can be written as

Ŝaa ¼ GSqqoG
H . (12)

2.3. Realization of optimal shaping filters

Eq. (12) specifies the optimum cross-spectral source matrix, which excites, in the least-squares sense, an
EEpM sound field with incoherent mode amplitudes. It provides no guidelines as to how these L2 source
strength cross-spectra may be realized in practice. We now investigate the design of an array of filters which
can be used to excite a loudspeaker array at the duct wall to generate a broadband sound field in the duct
which has equal energy in a narrow frequency band.

We assume that the source strengths can be generated by a square matrix of shaping filters H, driven by a
number of input signals xT ¼ x1ðoÞ x2ðoÞ � � � xN ðoÞ

� 	
,

qso ¼ Hx. (13a)

A schematic diagram of this process is shown in Fig. 2.
The ith source strength produced by the sum of N optimally weighted input signals is therefore

qi;soðoÞ ¼ Hi;1ðoÞx1ðoÞ þHi;2ðoÞx2ðoÞ þ � � � þHi;N ðoÞxNðoÞ. (13b)
x1(t) q1(t)

xN(t)

xN-1(t)

x2(t)

White
Noises

q2(t)

qN−1(t)

qN(t)

Source
StrengthShaping

Filters

 IFFT{Hij(ω)}

Fig. 2. Schematic diagram of the generating process of generating an EEpM broadband sound field with shaping filters and white noise

input signals.
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The optimal source cross-spectral matrix is therefore given by

Sqqo ¼ HSxxH
H , (14)

where Sxx ¼ ðp=TÞEfxxHg. For simplicity, but without loss of generality, we assume that the vector of input
signals x comprises uncorrelated white noise signals so that

Sxx ¼ s2I, (15)

where I is the identity matrix and s2 is the mean square value of the noise signal x. The cross-spectral source
strength matrix Sqqo becomes

Sqqo

s2
¼ HHH . (16)

Since the cross-spectral matrix Sqqo is Hermitian, i.e., Sqqo ¼ SH
qqo, it can be expressed in terms of its

eigenvector and eigenvalue matrices U and S, respectively, in the form

Sqqo

s2
¼ USUH . (17)

Comparing with Eq. (16) indicates that matrix of shaping filters H may be related directly to U and S by

H ¼ UR1=2. (18)
3. Example results and discussion

A typical result of the broadband mode synthesizer is shown in Fig. 3. It shows the modal power plotted
against cut-on ratio amn at ka ¼ 15 generated by seven rings of sources, each containing 19 sources. The upper
figure is a plot of modal power versus cut-on ratio amn, where positive and negative a-values are used to
distinguish modes with +m and –m values. The lower figure shows the modal coherence, defined by
Efjamna�m0n0 j

2g=½Efjamnj
2gEfjam0n0 j

2g�. We now consider the number and arrangement of sources needed to
ensure accurate mode synthesis.
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Fig. 3. Typical result of the broadband synthesis at ka ¼ 20 using seven rings of sources, each containing 19 sources. (a) Modal energy

versus amn. (b) Modal coherence versus amn.
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3.1. Number of optimal sources and source geometry

Consider the sources to be arranged on the wall of the duct, as shown in Fig. 1, in Nr rings, separated by
distance Dz, each ring comprising Ns=r sources. For broadband sound fields excited over a limited frequency
range, the number of optimal sources required for accurate sound field synthesis is investigated. The number
of propagating modes increases approximately as the frequency is squared. The number of sources required
for accurate reconstruction of the sound field also increases with the same power law. In this paper, we set the
criteria for satisfactory mode synthesis as the deviation between modal energies and mutual modal coherence
as being better than 10%, i.e.,

W mn=$� 1


 

o0:1; g2mnm0n0 ¼

Efjamna�m0n0 j
2g

Efjamnj
2gEfjam0n0 j

2g
o0:1. (19a,b)

For a given ka, all source rings are separated by a distance of l=2. The minimum N tot satisfying the criterion of
Eq. (19) is chosen as the optimal configuration of source rings and sources per rings obtained by a searching
algorithm which finds the minimum N tot value by varying Ns=r and Nr. The optimal values of Ns=r and Nr

against non-dimensional frequency ka are plotted in Fig. 4.
From Fig. 4(a), Ns=r is always an odd number and less than 2mmax þ 1, which is the number of spinning

modes. Note that the optimal value of Nr is slightly greater than, or equal to, the maximum radial mode order
nmax (associated with m ¼ 0). The total number of sources, N tot ¼ Ns=rNr required for accurate mode
synthesis can be seen to be slightly greater than the number of possible propagating modes. Although a change
in source geometry could reduce the number of optimal sources required, considering the criteria of Eq. (19)
suggests that the total number of modes is equal to the lower limit of N tot.

Considering the sampling theorem in relation to the excitation of circumferential modes by the source rings
will be shown to be useful in understanding why the optimal value of Ns=r is odd and less than 2mmax þ 1. The
volume velocity variation along the duct wall can be expressed as sum of modal components

qðjÞ ¼
X1

m¼�1

qmCmðfÞ. (20)
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Fig. 4. Number of sources to construct EEpM sound field, which satisfy criteria of power and coherence. Both graphs compare the

number of sources with number of modes. (a) Optimum number of sources per ring and number of source rings. (b) Optimum number of

total sources.



ARTICLE IN PRESS
W. Jeong et al. / Journal of Sound and Vibration 290 (2006) 490–499496
The ortho-normal property of mode shape functions allows the m1th harmonic component of source strength
to be written as

qm11
¼

Z
qðfÞC�m1

dS. (21)

For a single source ring with sources separated in angle by 2p=Ns=r, substituting Eq. (2) into Eq. (21) gives

qm1
¼
XNs=r�1

n¼0

Jm1
ðkmaÞ

Nm1

qðjnÞ e
�jð2p=Ns=rÞm1n (22)

In Eq. (22), the term e�jð2p=Ns=rÞm1n plays an important role in determining the amplitude of each mode
independently. If two modes m1 and m2 give identical values of e

�jð2p=Ns=rÞm1n and e�jð2p=Ns=rÞm2n, the two modes
cannot be generated independently by a given source distribution qðjnÞ. In this case, the value of
ð2p=Ns=rÞm1 � ð2p=Ns=rÞm2 must be multiples of 2p, for example, m1 �m2 ¼ Ns=r. If there are two modes
which satisfy m1 �m2 ¼ Ns=r þ n (where n is positive integer, not a multiple of Ns=r or zero) then two
modes can be generated independently. Numbers of sources per ring Ns=r greater or equal to 2mmax þ 1,
therefore, prevent aliasing between two spinning modes, because of the property,
m1 �m2pjm1j þ jm2jo2mmax þ 1pNs=r. This corresponds to the Nyquist theorem applied to circumferential
mode.

In the previous sections, only aliasing of spinning modes due to a single source ring has been considered.
However, modes have both spinning and radial orders which are coupled by an axial wavenumber,

amn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðkmn=kÞ2

q
. Modes could therefore be discriminated by their spinning order and axial wavenumber.

If jm1jajm2j, there is little possibility that am1n and am2n have same value since each kmn has distinct values.
Suppose Ns=r is even and Ns=ro2mmax þ 1, then two modes satisfying

m1 ¼ þNs=r=2,

m2 ¼ �Ns=r=2 ð23Þ

have same axial wavenumber

am1n ¼ am2n ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðkNs=r=2n=kÞ2

q
. (24)

Two modes are axially aliased, in addition to circumferential aliasing. This is the worst case for source
reconstruction.

Suppose ðm1;m2Þ is (even, odd) pair, then the condition jm1jajm2j is satisfied. Then two modes are
generated independently by virtue of their different axial wavenumbers. This explains why the optimal value of
Ns=r is odd and less.

The effect of distance between source rings on the reconstruction accuracy of the ‘EEpM’ sound field is now
investigated to identify the optimum ring separation distance for accurate mode synthesis. The wavelength in
the axial direction is given by l=amn, where l is the free-space wavelength. It varies between l at frequencies
well above cut-on, to 1 at the cut-off frequency (amn ¼ 0.) The standard deviation of the normalized energy
per mode, sðEpMnormÞ versus Dz=l is plotted in Fig. 5 to examine the effect of ring distance for a number of
frequencies between ka ¼ 10 and 20.

In this simulation we assume Ns=r ¼ 19 and Nr ¼ 8, which are optimal for ka ¼ 20. For ka less than 20, the
assumed number of sources is greater than the number of optimal sources for a given ka to reconstruct the
EEpM sound field and thus sðEpMnormÞ drops quickly for a small value of Dz=l. For ka ¼ 20, the standard
deviation of energy per mode drops continually, reaching its smallest value when Dz=l ¼ 1. The standard
deviation of normalized energy per mode versus ring distance for various ka is plotted in Fig. 3b. The optimal
ring distance to generate an accurate broadband sound field with an upper frequency limit of ka ¼ 20 is
predicted to be Dz ¼ 0:3m which is the free-space wavelength at the highest wavenumber of ka ¼ 20 and
a ¼ 1m.
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3.2. Optimal shaping filters for the generation of EEpM

The number of shaping filters required to drive N tot sources is N2
tot. At ka ¼ 20, for example, the number of

sources is 152, comprising 19 and eight sources per ring. The corresponding number of shaping filters is
1522–23,000. Some examples of shaping filters and source strength power spectra are presented in Figs. 6 and 7
plotted over a non-dimensional frequency range of 1okao20. Here the ratio of source ring separation
distance and duct radius is Dz=a ¼ 0:3.

Although the total sound power in a unit frequency band stays constant, the magnitude of the source
strength spectrum is found to increase with increasing frequency as (ka)4 since the number of propagating
modes increase with frequency as (ka)2. For example, Sqq11 is the source strength at z ¼ 0, j ¼ 0. From
Eq. (11), note that Saa is diagonal matrix, Sqq11 is given by

Sqq11 ¼
XK

l¼1

g1lSaallgl1 (25)
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Fig. 5. Effect of ring distance is evaluated compared with wavelength and distance for ka ¼ 20, 18, 16, 14, 12, 10, and 8. Ns=r ¼ 19,

Nr ¼ 8, a ¼ 1m. (a) Standard deviation of normalized energy per mode versus d=l. (b) Standard deviation of normalized energy per mode

versus distance.
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in which Saall denotes the lth diagonal element in the matrix Saa and K is the number of propagation modes.
The terms g1l , gl1, and Saa11 at z ¼ 0 are real numbers and K is proportional to (ka)2. Thus magnitude of Sqq11

is approximately proportional to (ka)4.
The sudden drop in the source strength spectra at low frequencies in Fig. 6 coincides with the modal cut-on

frequencies (amn ’ 0). Close to the cut-on frequencies, the mode is almost a two-dimensional standing wave
which requires comparatively little source strength to drive it in a hard-wall duct [5]. The required time-
averaged sound power of modes close to the cut-on frequency can be readily deduced from Eq. (4). In the
high-frequency region, cut-on effects are masked by numerous other well cut-on modes. Fig. 7 shows the
magnitude of the shaping filter calculated using Eq. (18). The behavior of the shaping filter spectrum and the
source strength spectrum is found to be similar.

4. Conclusion

A technique for generating broadband sound fields with EEpM and modal incoherence characteristics in a
hard-walled duct with wall-mounted source is described. This method for generating ‘EEpM’ sound field
could be used for broadband sound field with different modal characteristics or different kind of source
distribution.

The optimal number of sources per ring and the optimal numbers of source ring for circular duct are
investigated. It is shown from considerations of the aliasing between modes in circular duct that the optimal
numbers of sources per ring are always odd and less than the number of total possible total circumferential
modes. The number of source rings is shown to be comparable to the possible number of radial modes. The
effect of source ring distance is examined by considering the standard deviation of the energy per mode. The
result shows that the optimal ring distance for broadband sound field generation is related to the wavelength
at the highest frequency of interest.

Examples of the shaping filters and source spectrum are given as functions of non-dimensional frequency up
to ka ¼ 20 with 19 sources per ring and eight source rings. The shaping filters are acquired from
decomposition of the optimal source spectrum matrix. The shaping filters driven by white noise signals could
be used to produce source strength signals for wall-mounted sources, which generate EEpM broadband sound
field with uncorrelated mode amplitudes.
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